Iterative Learning Control for a Class of Inhomogeneous Heat Equations
نویسندگان
چکیده
In this paper, a D-type anticipatory iterative learning control (ILC) scheme is applied to the boundary control of a class of inhomogeneous heat equations, where the heat flux at one side is the control input while the temperature measurement at the other side is the control output. By transforming the inhomogeneous heat equation into its integral form and exploiting the properties of the embedded Jacobi Theta functions, the learning convergence of ILC is guaranteed through rigorous analysis, without any simplification or discretization of the 3D dynamics in the time, space as well as iteration domains. The adopted ILC scheme makes full use of the process repetition and deals with state-independent or statedependent uncertainties. Meanwhile, due to the feedforward characteristic of ILC, the proposed scheme not only makes anticipatory compensation possible to overcome the heat conduction delay in boundary output tracking, but also eliminates the gain margin limitation encountered in feedback control. In the end, an illustrative example is presented to demonstrate the performance of the proposed ILC scheme. © 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
A new iteration method for solving a class of Hammerstein type integral equations system
In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...
متن کاملDynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملA new iterative with memory class for solving nonlinear equations
In this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. This class includes three parameters. Therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. Some numerical examples are also presented.
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013